Векторный генератор сигналов SMM100A

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Киргизия (996)312-96-26-47

Россия (495)268-04-70

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://rohdeschwarz.nt-rt.ru || rwz@nt-rt.ru

AT A GLANCE

State-of-the-art vector signal generators in the midrange are faced with strict requirements. The R&S®SMM100A provides users with a flexible option concept in combination with outstanding signal quality into the mmWave range as well as an excellent price/performance ratio. Discover the R&S®SMM100A, the only vector signal generator with mmWave testing capabilities in its class.

The R&S[®]SMM100A vector signal generator provides remarkably good RF characteristics across the entire frequency range from 100 kHz to 44 GHz. The instrument covers the bands below 6 GHz used by existing wireless standards as well as the newly defined bands for 5G NR FR1 and Wi-Fi 6E up to 7.125 GHz and the 5G NR FR2 bands up to 44 GHz.

The internal baseband generator in the R&S®SMM100A supports a maximum RF modulation bandwidth of 1 GHz. Digitally modulated broadband signals can thus be generated as required by the prevalent wireless standards. The R&S®SMM100A is well prepared for future bandwidth requirements.

Depending on the relevant test requirements, the R&S®SMM100A can be configured in particular for applications in production as well as for development work. It can be used as an economically attractive solution for playback of predefined waveforms with the arbitrary waveform generator (ARB). With the optional baseband generator, real-time capabilities are also available when required. Settings for complex signals are handled directly on the instrument – no external software is needed for signal generation.

Furthermore, the option concept of the R&S[®]SMM100A vector signal generator is very flexible. For example, digital baseband standards or upgrades of the RF modulation bandwidth can be easily activated at any time by entering a keycode, allowing the instrument to adapt to meet future requirements.

Key facts

- ► Frequency range from 100 kHz to 44 GHz
- ► High output power up to +18 dBm
- ▶ Internal RF modulation bandwidth up to 1 GHz
- Excellent modulation frequency response, error vector magnitude (EVM) and adjacent channel power ratio (ACPR)
- ► 5G NR signal generation for FR1 and FR2
- Ready for future WLAN requirements for RF frequency and modulation bandwidth
- Convenient operation via touchscreen and block diagram

BENEFITS

Discover excellent signal performance ► page 4

Discover baseband capabilities ► page 6

. .

Discover scalability

► page 7

Discover usability

► page 8

Discover applications

► page 10

APPLICATIONS

Mobile communications standards ► page 10

Ready for the next Wi-Fi generations ► page 11

Envelope tracking ► page 12

High rate pulse (HRP) ultrawideband (UWB) ▶ page 13

DISCOVER EXCELLENT SIGNAL PERFORMANCE

Verification of the performance of a device under test (DUT) requires the use of a signal generator with better signal quality than the DUT itself. Such performance is defined on one hand based on the SSB phase noise, the error vector magnitude (EVM) and the adjacent channel power ratio (ACPR). However, the amplitude and phase frequency response across the entire signal bandwidth is also an important criterion. The R&S®SMM100A excels in all of these areas.

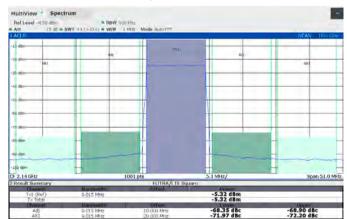
Excellent SSB phase noise and EVM performance

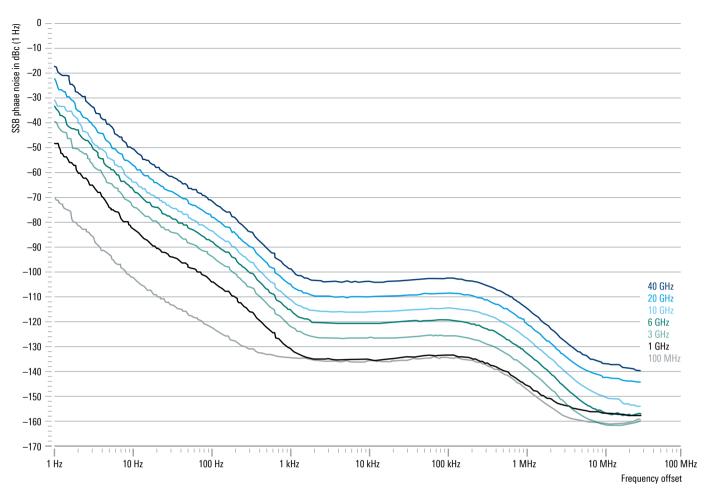
For the R&S[®]SMM100A vector signal generator, SSB phase noise of < -129 dBc is specified at an RF frequency of 1 GHz with a 20 kHz offset. The typical value of -134 dBc is even 5 dB lower. Thanks to its excellent RF performance, the R&S[®]SMM100A can be used not only as a local oscillator (LO) source; it also exhibits outstanding modulation characteristics at higher frequencies. For example, the R&S[®]SMM100A delivers impressive EVM performance of < -42 dB (0.8%) at an RF frequency of 28 GHz for a 100 MHz 5G NR signal in accordance with 3GPP test model (TM) 3.1.

Excellent ACPR/ACLR performance

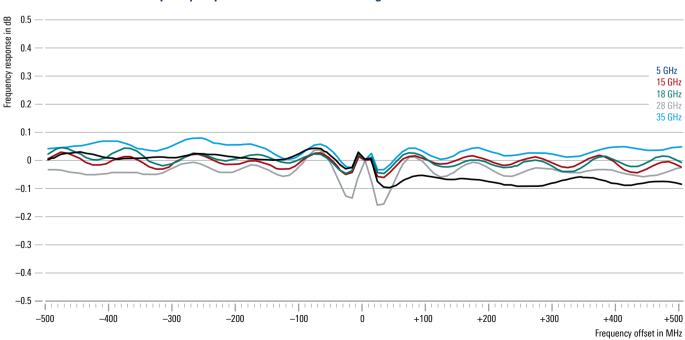
During development of the R&S[®]SMM100A, special attention was paid to minimizing unwanted distortion in order to achieve the best possible adjacent channel power ratio (ACPR). A 10 MHz LTE test signal in accordance with 3GPP TM 1.1 achieves ACLR performance in the adjacent channel of –69 dBc.

Extremely flat frequency response


Especially with single-carrier signals, the frequency response of the signal within the modulation bandwidth also has a major influence on the achievable EVM performance. It is thus essential to minimize this parameter in magnitude and phase across the entire RF frequency range of the generator.


Intelligent compensation is provided for internal influences of the R&S $^{\circ}$ SMM100A on the frequency response. The R&S $^{\circ}$ SMM100A thus attains a measured magnitude frequency response of < 0.4 dB over the entire RF modulation bandwidth of 1 GHz.

Multiview Spectrum SORR Constrained <thConstrained</th> Constrained Constr


Measured EVM for a 100 MHz 5G NR signal, 3GPP TM 3.1, 28 GHz carrier frequency

Measured ACLR for a 10 MHz LTE signal, 3GPP TM 1.1

Measured SSB phase noise performance, CW mode

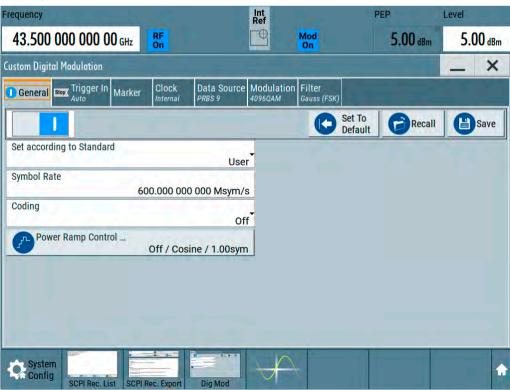
Measured I/Q modulation frequency response with internal baseband generator

DISCOVER BASEBAND CAPABILITIES

Internal real-time signal generation

The internal baseband of the R&S[®]SMM100A offers impressive real-time capabilities. Users can configure and generate standard-compliant signals for all major digital communications standards right on the instrument, including 5G NR, LTE, WLAN and many others. No external signal generation software is needed. The well-arranged configuration menus simplify operation of the instrument and help to speed up measurement tasks.

Arbitrary waveform generator


The arbitrary waveform generator is especially suitable for applications in production. Waveforms generated with the R&S®WinIQSIM2[™] simulation software can be loaded and played back. User-specific waveforms are also supported. The R&S®SMM100A is impressive with its large memory depth of up to 2 Gsample and maximum sampling rate of 1.2 Gsample/s.

Multi-segment mode is another ARB function that considerably speeds up test sequences by allowing fast switching between individual baseband signals.

Custom digital modulation

The R&S[®]SMM100A also makes it easy to generate custom digitally modulated signals with predefined modulation types and a symbol rate of up to 600 Msymbol/s. Besides standard pseudo noise (PN) data, user-specific data lists can also be loaded and a variety of configurable filters can be applied. Preconfigured settings are also available for various digital standards such as GSM and Bluetooth[®].

Custom digital modulation

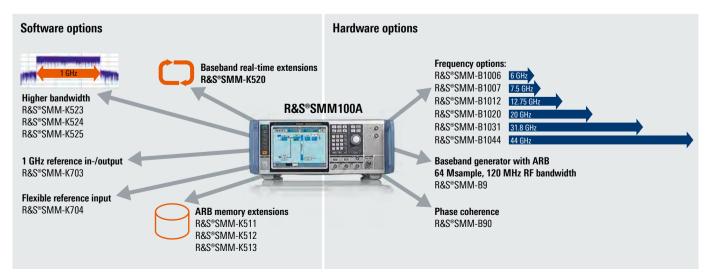
DISCOVER SCALABILITY

Frequency options

The R&S[®]SMM100A is available with various frequency options up to a maximum frequency of 44 GHz. This allows users to precisely configure the R&S[®]SMM100A to meet their actual test requirements. For example, signals can be generated in the 5G NR frequency ranges FR1 and FR2 up to 44 GHz. With the 7.5 GHz option, however, the relevant frequency range for Wi-Fi 6E can also be precisely covered.

Keycode extendable bandwidth and ARB memory

In the basic configuration, the R&S[®]SMM100A supports a maximum RF modulation bandwidth of 120 MHz. Depending on the requirements, this can be extended up to 1 GHz by installing a license key. With similar flexibility, the ARB memory depth can be extended from 64 Msample up to a maximum of 2 Gsample.


Timed licenses and waveform packs

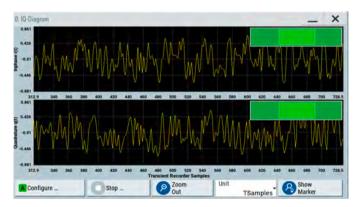
In addition to permanent software licenses, time-limited licenses are available for three, six or twelve months in order to support smaller projects in a cost-efficient manner. In cases where only a few test signals are needed from various standards, the waveform packages available in different sizes are the right choice. Once registered, the waves can be used as often as necessary with no time limitation.

Floating licenses

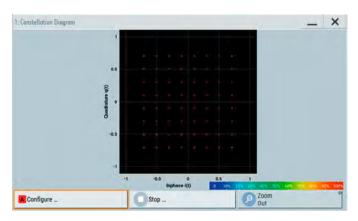
In production environments, many test procedures might run in parallel but not always at the same time. Measurement options that are tied to specific instruments go unused to some extent. The license server provides a solution to this problem. All available licenses are stored in a central location on a server. The different instruments simply access the license pool when necessary. This helps to reduce the number of necessary licenses while simultaneously cutting costs.

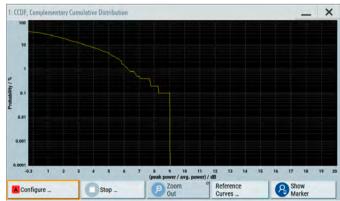
Overview of important software and hardware options

DISCOVER USABILITY

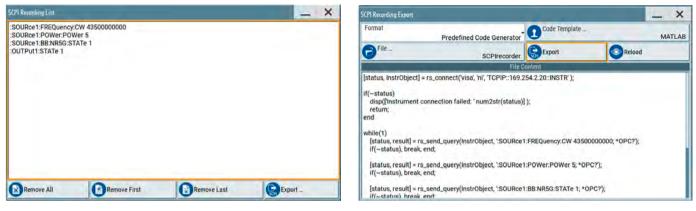

Structured and intuitive user interface

Instrument setups can be configured via a 8.4" touchscreen. The logically structured user interface is presented in the form of a block diagram. The configuration blocks begin with the baseband generator and are followed by the additive white Gaussian noise (AWGN) block, the I/Q modulator and the RF block for signal output. The block diagram represents the signal flow while simultaneously helping the user to intuitively work through the configuration menus. The built-in graphical analysis function allows verification of the configured baseband signal at different points within the overall signal flow path. Signals can be displayed in real time either in the time domain or as a spectrum. Additional analysis functions are available for the baseband signal.


Division of the user interface into configuration blocks

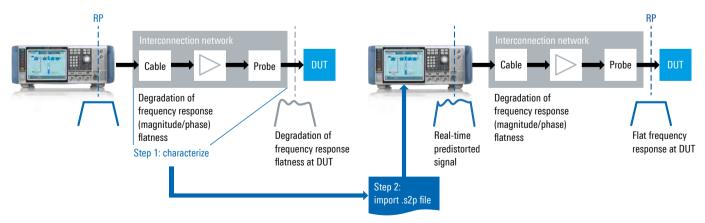


Graphical signal monitoring in real time



Automation made easy with context-sensitive help system and SCPI recording

Context-sensitive online help offers comprehensive information. It describes each parameter and setup menu in detail, states the setting range and shows the associated remote control commands. Moreover, users can search for specific parameters in the user manual installed on the instrument. The R&S[®]SMM100A helps users quickly and correctly create remote control programs. The instrument's built-in SCPI macro recorder with code generator can automatically record all manual settings and create an executable MATLAB[®] or Python script. They can be reused with other vector signal generators due to code compatibility. The R&S[®]SMM100A therefore helps mini-mize the time required for test automation, saving devel-opment resources.

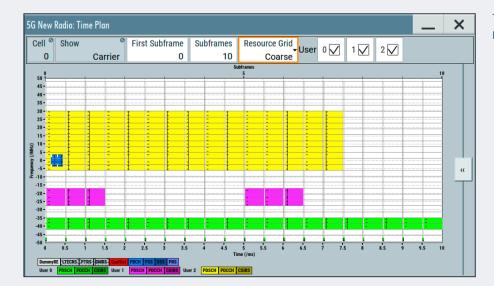


R&S®SMM-K544 frequency response correction

Various RF components such as cables, adapters, amplifiers and antennas are used to connect the signal generator to the DUT. Of course, all of these components influence the RF signal provided by the R&S[®]SMM100A. The R&S[®]SMM-K544 frequency response correction option can be used to automatically compensate for this effect. The frequency response for the components that are used is saved in .s2p files, which can be individually selected as required. The reference plane of the test signal is thus shifted from the RF connector of the R&S[®]SMM100A to the DUT input.

Principle of user-defined frequency response correction with R&S®SMM-K544 option

DISCOVER APPLICATIONS


Mobile communications standards

Using a wide range of available signal generation options, the R&S[®]SMM100A can produce test signals in compliance with the most important wireless communications standards. The instrument is especially well suited for generation of standard-compliant 5G NR signals. When equipped with the R&S[®]SMM-B1044 frequency option, the instrument covers frequency ranges FR1 up to 7.125 GHz and FR2 up to 44 GHz. Together with the R&S[®]SMM-K525 bandwidth extension to 1 GHz, the instrument can handle the increased requirements for signal bandwidth in 5G applications (especially in frequency range FR2 and with carrier aggregation). With its outstanding signal quality, the R&S[®]SMM100A is the perfect signal generator for 5G NR base station conformance testing in all frequency ranges – conducted and OTA.

Users benefit from the predefined test models and fixed reference channels (FRC). A test case wizard simplifies configuration of the instrument for 3GPP-compliant 5G NR and LTE BTS conformance tests. Once the user has selected the desired conformance test case, the wizard automatically handles configuration of all signal parameters and other R&S®SMM100A settings.

The 5G NR test case wizard allows the R&S®SMM100A to be conveniently and cleverly configured for BTS tests in line with 3GPP TS 38.141

Time plan display in the 5G NR option of the R&S[®]SMM100A

Ready for the next Wi-Fi generations

Below 6 GHz, the current WLAN standards IEEE 802.11ac and IEEE 802.11ax use a maximum signal bandwidth of 160 MHz. However, WLAN is also following the trend toward higher frequencies and larger bandwidths. For Wi-Fi 6E, the frequency range between 5.8 GHz and 7.125 GHz will be used. For future WLAN standards such as IEEE802.11be, a signal bandwidth of 320 MHz has already been specified. With EVM of better than –50 dB for a signal bandwidth of 320 MHz, the R&S[®]SMM100A satisfies the relevant requirements for signal quality. In combination with the R&S[®]SMM-B1007 frequency option up to 7.5 GHz and the R&S[®]SMM-K524 bandwidth extension to 500 MHz, the R&S[®]SMM100A is the ideal signal generator for WLAN testing of components, modules and devices.

EVM measurement of a IEEE 802.11ac WLAN signal with 160 MHz signal bandwidth

	-	-								X
MultiView Spectrum	× WLAN	×						-		Panel
Sample Rate Fs 320.0 MHz	Standard	IEEE 802 11ac	Capt Tim	e/Samples	1ms/32000	00	S	GL	Freq.	Span
PPDU/MCS/GI VHT160/9/L128	Meas Setup $1 T \times X 1$	Rx: Simultaneous	Data Syn	nbols	1/136	56	PI	PDUs 6(6)	rieq.	əpan
TRG:EXT1 YIG Bypass		<u> </u>							Ampt. / Scale	Auto Set
1 Magnitude Capture Freq 5.3 C		Result Summary lo. of PPDUs - Rec		6 Analyze	od:6 (Analyzed Ph	weical Char	opol: 6	Scale	set
		PPDUs:	Min	Mean	Limit	Max	Limit	Unit 🔺	BW	Sweep
		Pilot Bit Error	1 Million	mean		Max				
		Rate			0.00		0.00	%	Trace	Trigger
-20 dBm										Meas
		EVM All Carriers	0.33	0.35	2.51	0.35	2.51	%	Meas	Config
-#0 dBm	ri ir		40 57		~~ ~~	40.00	~~ ~~		Lines	Input /
a la contra la contra la contra da contra	no (nimenti (' energiale)		-49.57	-49.21	-32.00	-49.03	-32.00	dB	LINCS	Output
			0.00	0.05	2.51	0.05	0.51	%	Marker	Peak Search
-60 dBm		VM Data Carriers	0.33	0.35	2.51	0.35	2.51	%	_	
			40.50	40.01	22.00	40.00	22.00	dB	Marker Function	Marker
-80 dBm			-49.59	-49.21	-32.00	-49.06	-32.00	aв		
		WM Pilot Carriers	0.33	0.25	56.23	0.20	56.23	% _	Undo	Redo
0.0 s	1.0 ms	WM Phot Carriers	0.33	0.35	30.23	0.39	30.23	⁹⁰ •	Run	Run
2 Constellation	●1 Clrw	4 EVM vs Carri	ier			01	Min●2 Av	g o 3 Max	Single	Cont.
										Print
									Setup	Print
		-20 dB							File	Mode
		AUGBN MUMM	Why why have	W many who	AN MARANA	mmont	W white way	WWWWWWWW	⊒⊷□	
		- Mr. M.	and within	www.www.www.www.www.	w www.w	www.www	Mr wanter want	have been and		
		-60 dB	and Calab	August 144	h. Lille	will a la h	Lan Lillur as	Anthenia	GHz s -dBm ¥	MHz ms dBm m¥
		- WWW - WWW	WW WMW	l Adama (Mall	M Market	mpw mr	N. J. Marilya	. Mathemat		
·····		-180 dB	1 · · · ·			Y 1 Y 1 Y	1 "		kHz µs dB µ¥	Hz ns dBn¥
			ľ	1						
-!!!!!!!!!!!!!-	{}	Comion 050		FO /					Pre	set
		Carrier -250		50 (Carrier/			nrier 250		00 2020
~						v Rea	dy 🚺		100 25.	.08.2020 L3:22:29

Envelope tracking

An increasing number of power amplifiers support envelope tracking (ET) in order to reduce power consumption and improve efficiency, for example in smartphones and tactical radios. Typical test setups for measuring power amplifiers comprise at least one signal generator and one spectrum analyzer. Envelope tracking requires an additional generator to deliver the envelope signal for the DC modulator.

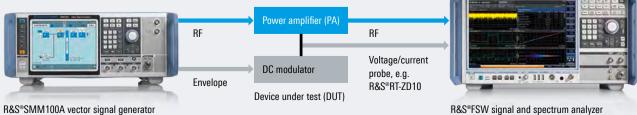
RF and envelope signal out of one box

Equipped with the R&S[®]SMM-K540 envelope tracking option, the R&S®SMM100A generates both the RF signal and the corresponding envelope signal. The envelope signal is generated from the baseband signal in real time. This means that any user-specific I/Q signals and any supported wireless communications signals, such as 5G NR or LTE, can be used.

Generating the RF signal and the envelope signal in a single instrument makes it possible to precisely adjust the delay between the two signals.


The R&S®SMM100A adjusts the delay in picosecond steps in real time, meeting tight requirements, for example accuracy better than 1 ns for a 20 MHz LTE signal.

The envelope signal is shaped to optimize the power amplifier for efficiency or linearity. The R&S®SMM100A offers various shaping methods, such as look-up table and polynomial, which are applied in real time. For power sweeps, the R&S[®]SMM100A automatically calculates the amplitude of the envelope signal, eliminating timeconsuming manual calculations. It is also possible to adjust additional parameters, such as the gain and impedance of the DC modulator.


Real-time digital predistortion

With envelope tracking, the amplifier is operated close to or even in saturation, causing distortion at the amplifier output. To compensate for this effect, envelope tracking is often used in combination with digital predistortion (DPD). Equipped with the R&S®SMM-K541 digital predistortion option, the R&S[®]SMM100A can apply real-time amplitude and phase correction to each complex I/Q sample using the values in the DPD tables. As a result, users can guickly verify the effect of predistortion, even for different power levels, without having to manually calculate the original waveform.

Digital predistortion user interface with the R&S[®]SMM-K541 option

Compact setup for power amplifier tests including envelope tracking

R&S®SMM100A vector signal generator

High rate pulse (HRP) ultrawideband (UWB)

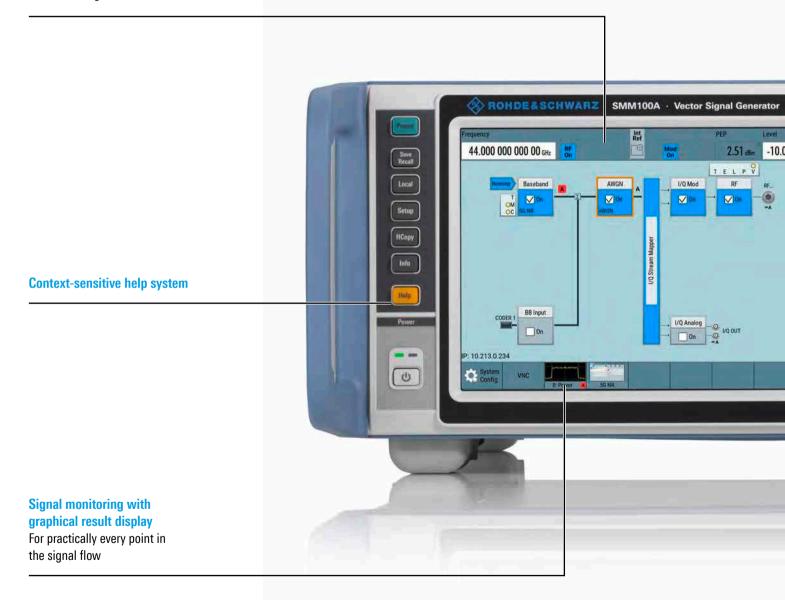
Due to the ability to determine distances with extremely high precision, HRP UWB is becoming increasingly important in many applications. In mobile devices, this information is used for hands-free access, mobile payments or asset finding, for example. In automotive applications, keyless entry systems that determine the distance between the key and the vehicle are also well established.

Based on amendment IEEE 802.15.4z to the IEEE 802.15.4a-2015 standard, new coding and preamble options as well as higher symbol rates for existing modulation types have been introduced for HRP UWB PHY in order to increase the accuracy of distance determination and improve the integrity of the measurement.

The R&S[®]SMM100A is ideally suited for HRP UWB receiver testing. With the R&S[®]SMM-B1012 frequency option up to 12.75 GHz, the R&S[®]SMM100A covers the frequency range used by HRP UWB up to 10.6 GHz. Together with the R&S[®]SMM-K524 baseband extension option to 500 MHz RF bandwidth, signals can be generated on the most important channels with a signal bandwidth of up to 500 MHz.

The R&S[®]SMM-K149 HRP UWB baseband option supports signal generation for the three specified modes: HRP UWB from IEEE 802.15.4a-2015 as well as the base pulse repetition frequency (BPRF) mode and the high pulse repetition frequency (HPRF) mode for enhanced ranging devices (ERDEF) from IEEE 802.15.4z.

For use in testing receivers, flexible configuration of the HPR UWB frame is supported. Depending on the requirements, the channel number, idle time, synchronization header (SHR), physical header (PHR), physical service data unit (PSDU) and scrambled timestamp sequence (STS) for time of flight measurements can all be individually configured. In addition, impairments due to symbol timing error and frequency offset can be simulated.


HRP UWB signal generation (R&S[®]SMM-K149 option)

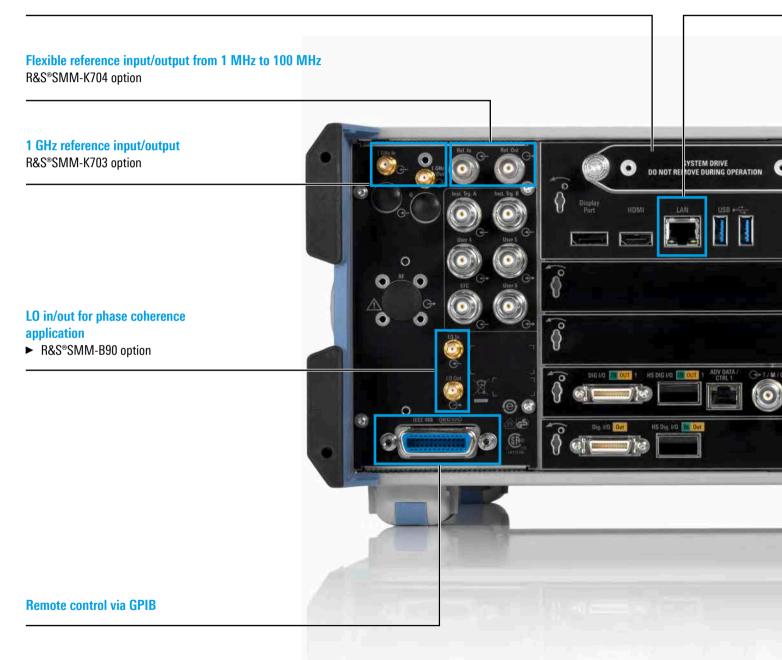
IRP UWB 802.1	5.4	the second			×
🗿 General 🔤	Trigger In Aarke	r Clock Frame Con	figuration Impairments		- 1
SYNC	SFD PHR	2.	Payload	S	TS
L.		Physica	Il Data		General
Data Source		PN9			
Viterbi Rate		ø 0.5			SYNC
Viterbi Cons	straint Length	CL3	MAC FCS		STS
Mean PRF		ø 15.60 MHz	Data Rate	ø 6.81 Mb/s	
PHR Data R	ate Mode	DRHM_LR			
10 Sector 1		PHR(Physic	al Header)		
PHR Bit Rat	e	∞ 3.900 Mb/s	Data Length	20 Octets	

STATE-OF-THE-ART USER INTERFACE

High-resolution touchscreen

With easy-to-use graphical user interface and block diagram

Favorite key


For simplified and fast operation via customizable user menu

¹⁾ Depending on frequency option.

REAR PANEL CONNECTIONS

Removable hard disk drive

Remote control via USB or LAN

SPECIFICATIONS IN BRIEF

Specifications in brief							
Frequency range	with R&S [®] SMM-B1006 option	100 kHz to 6 GHz					
	with R&S [®] SMM-B1007 option	100 kHz to 7.5 GHz					
	with R&S [®] SMM-B1012 option	100 kHz to 12.75 GHz					
	with R&S [®] SMM-B1020 option	100 kHz to 20 GHz					
	with R&S [®] SMM-B1031 option	100 kHz to 31.8 GHz					
	with R&S [®] SMM-B1044, R&S [®] SMM-B1044	IN 100 kHz to 44 GHz					
	options	100 KH2 10 44 GH2					
Level range	peak envelope power (PEP)						
	$100 \text{ kHz} \le f < 1 \text{ MHz}$	–120 dBm to +3 dBm					
	$1 \text{ MHz} \le f \le 3 \text{ MHz}$	-120 dBm to +8 dBm					
	with R&S [®] SMM-B1006/-B1007/-B1012/-B [*]	1020 options					
	3 MHz < f ≤ 20 GHz						
	with R&S [®] SMM-B1031/-B1044/-B1044N o						
	$3 \text{ MHz} < f \le 3 \text{ GHz}$	–120 dBm to +18 dBm					
	3 GHz < f ≤ 16 GHz	–120 dBm to +17 dBm					
	16 GHz < f ≤ 19.5 GHz						
	CW, I/Q modulation,	–120 dBm to +15 dBm					
	signal bandwidth ≤ 160 MHz						
	I/Q modulation,	–120 dBm to +12 dBm					
	signal bandwidth > 160 MHz	100 ID (10 ID					
	19.5 GHz < f \leq 29 GHz	-120 dBm to +18 dBm					
	$29 \text{ GHz} < f \le 33 \text{ GHz}$	-120 dBm to +17 dBm					
	33 GHz < f \leq 40 GHz	-120 dBm to +15 dBm					
	$40 \text{ GHz} < f \le 42 \text{ GHz}$	-120 dBm to +13 dBm					
	42 GHz < f ≤ 44 GHz	–120 dBm to +11 dBm					
Spectral purity							
SSB phase noise		= 20 kHz, measurement bandwidth = 1 Hz					
	$20 \text{ MHz} \le f \le 200 \text{ MHz}$	< -129 dBc, -134 dBc (typ.)					
	f = 1 GHz	< -129 dBc, -134 dBc (typ.)					
	f = 2 GHz	< -123 dBc, -128 dBc (typ.)					
	f = 3 GHz	< -119 dBc, -124 dBc (typ.)					
	f = 4 GHz	< -117 dBc, -122 dBc (typ.)					
	f = 6 GHz	< -113 dBc, -118 dBc (typ.)					
	f = 10 GHz	< -109 dBc, -114 dBc (typ.)					
	f = 20 GHz f = 30 GHz	< -103 dBc, -108 dBc (typ.)					
		< -99 dBc, -104 dBc (typ.)					
	f = 40 GHz	< -97 dBc, -102 dBc (typ.)					
Lieves entire	f = 44 GHz	< -96 dBc, -101 dBc (typ.)					
Harmonics	CW, level < 10 dBm						
	with R&S [®] SMM-B1006/-B1007/-B1012 o						
	with R&S [®] SMM-B1020/-B1031/ B1044/-I						
	$f \le 3.5 \text{ GHz}$	< –30 dBc < –55 dBc					
	f > 3.5 GHz						
Nonharmonics	CW, I/Q modulation (external wideband I/C > 10 kHz offset from carrier	$_{2}$, run-scale DC input), level > -10 dBm,					
	$100 \text{ kHz} \le f \le 200 \text{ MHz}$	< -80 dBc					
	$200 \text{ MHz} \le f \le 2.00 \text{ MHz}$	< -85 dBc					
	$1.5 \text{ GHz} < f \le 3 \text{ GHz}$	< -79 dBc					
	$3 \text{ GHz} < f \le 6 \text{ GHz}$	< -73 dBc					
	$6 \text{ GHz} < f \le 12 \text{ GHz}$	< -67 dBc					
	$12 \text{ GHz} < f \le 24 \text{ GHz}$	< -61 dBc					
	$24 \text{ GHz} < 1 \le 24 \text{ GHz}$	< -55 dBc					
Analog modulation 24 GHz < 1 ≤ 44 GHz < −55 dBC							
	with R&S [®] SMM-K720 option	AM, FM, PM					
	with R&S®SMM-K720 option	pulse modulation					
		puse modulation					

Specifications in brief				
RF modulation bandwidth	with internal baseband I/Q, I/Q wideband on; with R&S°SMM-B1006/-B1007/-B1012/-B1020/-B1031/-B1044 options			
	1 MHz ≤ f ≤ 300 MHz	±32% of carrier frequency		
	300 MHz < f ≤ 1.25 GHz	±40% of carrier frequency		
	f > 1.25 GHz	±500 MHz		
	with internal baseband I/Q, I/Q wideband on; with R&S [®] SMM-B1044N option			
	1 MHz ≤ f ≤ 300 MHz	±32% of carrier frequency		
	300 MHz < f ≤ 1.25 GHz	±40% of carrier frequency		
	1.25 GHz < f ≤ 19.5 GHz	±500 MHz		
	f > 19.5 GHz	±275 MHz		
Modulation frequency response in specified RF modulation bandwidth	with internal baseband, I/Q wideband on	< 1.0 dB, < 0.4 dB (meas.)		
I/Q baseband generator				
Signal bandwidth	standard	120 MHz		
	with R&S [®] SMM-K523 option	240 MHz		
	with R&S [®] SMM-K523 and R&S [®] SMM-K524 options	500 MHz		
	with R&S [®] SMM-K523, R&S [®] SMM-K524 and R&S [®] SMM-K525 options	1000 MHz		
ARB memory depth	standard	64 Msample		
	with R&S [®] SMM-K511 option	512 Msample		
	with R&S [®] SMM-K511 and R&S [®] SMM-K512 options	1 Gsample		
	with R&S [®] SMM-K511, R&S [®] SMM-K512 and R&S [®] SMM-K513 options	2 Gsample		
Digital standards				
Supported standards and modulation systems		5G NR, OFDM signal generation, cellular IoT, LTE, 3GPP FDD/HSPA/HSPA+, GSM/EDGE/ EDGE Evolution, CDMA2000 [®] , 1xEV-DO Rev. A/B, WLAN IEEE802.11a/b/g/n/j/p/ac/ax, HRP UWB, AWGN and more		

ORDERING INFORMATION

Designation	Туре	Order No.
Base unit		
Vector signal generator, including power cable and quick start guide	R&S [®] SMM100A	1440.8002.02
Options R&S®SMM-Bxxx = hardware option, R&S®SMM-Kxxx = software/keycode option		
Frequency options		
100 kHz to 6 GHz	R&S [®] SMM-B1006	1440.9009.02
100 kHz to 7.5 GHz	R&S [®] SMM-B1007	1440.9109.02
100 kHz to 12.75 GHz	R&S [®] SMM-B1012	1440.9209.02
100 kHz to 20 GHz	R&S [®] SMM-B1020	1440.9309.02
100 kHz to 31.8 GHz	R&S [®] SMM-B1031	1440.9409.02
100 kHz to 44 GHz	R&S [®] SMM-B1044	1440.9509.02
100 kHz to 44 GHz, I/Q modulation bandwidth and minimum pulse width limited	R&S [®] SMM-B1044N	1440.9609.02
RF options		
Phase coherence	R&S [®] SMM-B90	1440.9709.02
Pulse modulator	R&S [®] SMM-K22	1441.1330.02
Pulse generator	R&S [®] SMM-K23	1441.1347.02
Multifunction generator	R&S [®] SMM-K24	1441.1353.02
100 MHz, 1 GHz ultra low noise reference input/output	R&S [®] SMM-K703	1441.1301.02
Flexible reference input (1 MHz to 100 MHz)	R&S [®] SMM-K704	1441.1318.02
AM/FM/PM	R&S [®] SMM-K720	1441.1324.02
Baseband		
Baseband generator with ARB (64 Msample, 120 MHz RF bandwidth)	R&S [®] SMM-B9	1440.9809.02
Differential analog I/Q outputs	R&S [®] SMM-K17	1441.2143.02
ARB memory extension to 512 Msample	R&S [®] SMM-K511	1441.1260.02
ARB memory extension to 1 Gsample	R&S [®] SMM-K512	1441.1276.02
ARB memory extension to 2 Gsample	R&S [®] SMM-K513	1441.2120.02
Baseband real-time extension	R&S [®] SMM-K520	1441.2114.02
Baseband extension to 240 MHz RF bandwidth	R&S [®] SMM-K523	1441.2108.02
Baseband extension to 500 MHz RF bandwidth	R&S [®] SMM-K524	1441.2095.02
Baseband extension to 1 GHz RF bandwidth	R&S [®] SMM-K525	1441.2089.02
Baseband enhancements		
Additive white Gaussian noise (AWGN)	R&S [®] SMM-K62	1441.2072.02
Bit error rate tester	R&S [®] SMM-K80	1441.2066.02
Envelope tracking	R&S [®] SMM-K540	1441.2050.02
AM/AM, AM/PM predistortion	R&S [®] SMM-K541	1441.2043.02
User-defined frequency response correction	R&S®SMM-K544	1441.2037.02
Crest factor reduction	R&S [®] SMM-K548	1441.1130.02
Digital standards		
GSM/EDGE	R&S [®] SMM-K40	1441.2020.02
EDGE evolution	R&S [®] SMM-K41	1441.2014.02
3GPP FDD	R&S [®] SMM-K42	1441.2008.02
CDMA2000°	R&S [®] SMM-K46	1441.1999.02
1xEV-DO Rev. A	R&S [®] SMM-K47	1441.1982.02
TD-SCDMA	R&S [®] SMM-K50	1441.1960.02
TD-SCDMA enhanced BS/MS tests	R&S [®] SMM-K51	1441.1953.02
IEEE 802.11a/b/g/n/j/p	R&S [®] SMM-K54	1441.1930.02
LTE	R&S [®] SMM-K55	1441.1924.02
Bluetooth [®] EDR	R&S®SMM-K60	1441.1918.02

Designation	Туре	Order No.
3GPP FDD HSPA/HSPA+, enhanced BS/MS tests	R&S®SMM-K83	1441.1899.02
LTE Release 9	R&S [®] SMM-K84	1441.1882.02
LTE Release 10	R&S [®] SMM-K85	1441.1876.02
IEEE 802.11ac	R&S [®] SMM-K86	1441.1860.02
1xEV-DO Rev. B	R&S [®] SMM-K87	1441.1853.02
NFC A/B/F	R&S [®] SMM-K89	1441.1160.02
LTE Release 11	R&S [®] SMM-K112	1441.1847.02
LTE Release 12	R&S [®] SMM-K113	1441.1830.02
OFDM signal generation	R&S [®] SMM-K114	1441.1824.02
Cellular IoT Release 13	R&S [®] SMM-K115	1441.1818.02
Bluetooth [®] 5.x	R&S [®] SMM-K117	1441.1799.02
LTE Releases 13, 14 and 15	R&S [®] SMM-K119	1441.1776.02
LoRa®	R&S [®] SMM-K131	1441.1760.02
IEEE802.11ax	R&S [®] SMM-K142	1441.1753.02
Cellular IoT Release 14	R&S®SMM-K143	1441.1747.02
5G NR Release 15	R&S [®] SMM-K144	1441.1730.02
Cellular IoT Release 15	R&S [®] SMM-K146	1441.1247.02
5G NR Release 16	R&S [®] SMM-K148	1441.2166.02
HRP UWB	R&S [®] SMM-K149	1441.1099.02
Digital standards using R&S [®] WinIOSIM2 ^{™ 1)}		
GSM/EDGE	R&S [®] SMM-K240	1441.1724.02
EDGE Evolution	R&S [®] SMM-K241	1441.1718.02
3GPP FDD	R&S [®] SMM-K242	1441.1701.02
GPS, 1 satellite	R&S [®] SMM-K244	1441.1699.02
CDMA2000°	R&S [®] SMM-K246	1441.1682.02
1xEV-DO Rev. A	R&S [®] SMM-K247	1441.1676.02
TD-SCDMA	R&S°SMM-K250	1441.1653.02
TD-SCDMA enhanced BS/MS tests	R&S [®] SMM-K251	1441.1647.02
DVB-H/DVB-T	R&S°SMM-K252	1441.1630.02
DAB/T-DMB	R&S [®] SMM-K253	1441.1624.02
IEEE802.11a/b/g/n/j/p	R&S°SMM-K254	1441.1618.02
LTE	R&S [®] SMM-K255	1441.1601.02
Bluetooth [®] EDR	R&S [®] SMM-K260	1441.1599.02
Multicarrier CW signal generation	R&S [®] SMM-K261	1441.1582.02
Additive white Gaussian noise (AWGN)	R&S°SMM-K262	1441.1576.02
Galileo, 1 satellite	R&S [®] SMM-K266	1441.1560.02
3GPP FDD HSPA/HSPA+, enhanced BS/MS tests	R&S°SMM-K283	1441.1547.02
LTE Release 9	R&S°SMM-K284	1441.1530.02
LTE Release 10	R&S°SMM-K285	1441.1524.02
IEEE 802.11ac	R&S°SMM-K286	1441.1518.02
1xEV-DO Rev. B	R&S°SMM-K287	1441.1501.02
NFC A/B/F	R&S°SMM-K289	1441.1499.02
GLONASS, 1 satellite	R&S°SMM-K294	1441.1482.02
IRNSS, 1 satellite	R&S [®] SMM-K297	1441.1199.02
Modernized GPS, 1 satellite	R&S°SMM-K298	1441.1476.02
BeiDou, 1 satellite	R&S°SMM-K407	1441.1460.02
LTE Release 11	R&S [®] SMM-K412	1441.1453.02
LTE Release 12	R&S®SMM-K413	1441.1447.02
OFDM signal generation	R&S®SMM-K414	1441.1430.02
Cellular IoT Release 13	R&S®SMM-K415	1441.1424.02
DVB-S2/DVB-S2X	R&S®SMM-K416	1441.1418.02
Bluetooth [®] 5.x	R&S®SMM-K417	1441.1401.02

¹⁾ R&S®WinIQSIM2[™] requires an external PC.

Designation	Туре	Order No.	
LTE Releases 13, 14 and 15	R&S®SMM-K419	1441.1382.02	
LoRa®	R&S®SMM-K431	1441.1182.02	
Modernized BeiDou, 1 satellite	R&S®SMM-K432	1441.1176.02	
IEEE802.11ax	R&S [®] SMM-K442	1441.1376.02	
Cellular IoT Release 14	R&S®SMM-K443	1441.1253.02	
5G NR Release 15	R&S [®] SMM-K444	1441.1360.02	
Cellular IoT Release 15	R&S®SMM-K446	1441.1230.02	
Waveform package for signals from R&S®WinIQSIM2™			
1 waveform	R&S®SMM-K200	1441.1124.71	
5 waveforms	R&S®SMM-K200	1441.1124.72	
50 waveforms	R&S®SMM-K200	1441.1124.75	
Recommended extras			
19" rack adapter	R&S®ZZA-KN4	1177.3033.00	
Cable for HS digital I/Q interface, optical cable with QSFP+ plug	R&S®DIGIQ-HS	3641.2948.03	
USB serial adapter for RS-232 remote control	R&S®TS-USB1	6124.2531.00	
Adapters for instruments with an R&S®SMM-B1012/-B1020/-B2020/-B1031 frequency option			
Test port adapter, 2.92 mm female		1036.4790.00	
Test port adapter, 2.92 mm male		1036.4802.00	
Test port adapter, N female		1036.4777.00	
Test port adapter, N male		1036.4783.00	
Adapters for instruments with an R&S [®] SMM-B1044/-B1044N frequency option			
Coaxial adapter 1.85 mm (f) – 1.85 mm (f)		3588.9654.00	
Coaxial adapter 1.85 mm (f) – 2.92 mm (f)		3628.4728.02	
Documentation			
Documentation of calibration values	R&S®DCV-2	0240.2193.18	
R&S [®] SMM100A accredited calibration,	R&S®ACASMM100A	3598.6993.03	
for instruments with R&S [®] B1006 6 GHz frequency option R&S [®] SMM100A accredited calibration,			
for instruments with R&S [®] B1007 7.5 GHz frequency option	R&S®ACASMM100A	3598.7019.03	
R&S®SMM100A accredited calibration, for instruments with R&S®B1012/-B1020/-B1031/-B1044/-B1044N	R&S®ACASMM100A	3598,7002.03	
12.75/20/31.8/44 GHz frequency option		00001.002.00	

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (8652)267-13-56 Сочи (862)225-72-31 Сочи (862)225-72-31 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Россия (495)268-04-70

Казахстан (772)734-952-31