Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Казакстан (772)734-952-31

Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Сургут (3462)77-98-35

https://rohdeschwarz.nt-rt.ru || rwz@nt-rt.ru

Россия (495)268-04-70

Приложение к свидетельству № 44630

об утверждении типа средств измерений

Лист № 1 всего листов 4

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Аттенюаторы ступенчатые R&S RSC

Назначение средства измерений

Аттенюаторы ступенчатые R&S RSC (далее – аттенюаторы) предназначены для ослаб-ления уровня высокочастотных электромагнитных колебаний и воспроизведения шкалы от-ношения мощностей в качестве преобразователей масштабных переменных по ГОСТ Р 8.562-2007.

Аттенюаторы применяются при исследовании, разработке, производстве радиоэлек-тронной аппаратуры, а также при поверке и калибровке радиоэлектронных средств измере-ний.

Описание средства измерений

Принцип действия аттенюаторов основан на ослаблении входного сигнала с помощью коммутируемых резистивных секций. Коммутация секций производится при помощи электромеханического реле.

Конструктивно аттенюаторы выполнены в виде индикаторного блока и встроенных в него или внешне подключаемых модулей с резистивными секциями, модули отличаются час-тотным диапазоном и шагом ослабления. Управление настройками аттенюатора производится с помощью кнопок на передней панели индикаторного блока с одновременным их отображе-нием на экране, размещенном также на передней панели. Также на передней панели располо-жены вход и выход для встроенных в блок резистивных секций. На задней панели размещены разъем сетевого питания, разъемы для подключения внешних модулей и интерфейсы дистан-ционного управления (GPIB, LAN, USB).

Внешний вид аттенюатора приведён на рисунке 1.

Рисунок 1

Рисунок 2
* – места пломбировки от несанкционированного доступа

Программное обеспечение

Встроенное программное обеспечение управляет режимами работы и настройками аттенюатора. Выполняемые функции ПО: вывод информации о состоянии прибора на экран, определение команд пользователя путем опроса клавиатуры передней панели или интерфейса дистанционного управления, управление настройками прибора в соответствии с полученными командами. Защита программного обеспечения от преднамеренных изменений обеспечивается защитой паролем к сервисным функциям, уровень защиты программного обеспечения А по МИ 3286-2010. Программное обеспечение не влияет на метрологические характеристики.

Идентификационные данные ПО приведены в таблице.

Наименование	Идентификацион-	Номер версии	Цифровой иден-	Алгоритм вычис-
программного	ное наименование	программного	тификатор про-	ления цифрового
обеспечения	программного	обеспечения	граммного	идентификатора
	обеспечения		обеспечения	программного
				обеспечения
R&S RSC	R&S RSC	Версия 01.04	242AD7B7	CRC32
Firmware	Firmware			

Метрологические и технические характеристики

THE POSITION TERMS IN TERMS TERMS AND UNITED THE TIME				
Наименование модуля	04; 14	03; 13	05; 15	Z405
Диапазон частот	(06) ГГц	(06) ГГц	(018) ГГц	(040) ГГц
Диапазон ослаблений	(0139,9) дБ	(0139) дБ	(0115) дБ	(075) дБ
Шаг перестройки ос-	0,1 дБ	1 дБ	5 дБ	5 дБ
лабления				
Вносимое ослабление	2 дБ	2 дБ	3,5 дБ	5 дБ
при 0 дБ, не более				
Тип разъема	N, розетка	N, розетка	N, розетка	2,92 мм, розетка
КСВН входа/выхода,	(01) ГГц: 1,22	(01) ГГц: 1,22	(02) ГГц: 1,22	(010) ГГц: 1,22
не более	(13) ГГц: 1,67	(13) ГГц: 1,43	(218) ГГц:	(1030) ГГц: 1,43
	(36) ГГц: 1,93	(36) ГГц: 1,93	1,43	(3040) ГГц: 1,67

Пределы допускаемой	(01) ГГц:	(05) ГГц:	(010) ГГц:
абсолютной погрешно-	$\pm (0.2+0.01\times A)$	$\pm (0.6+0.01\times A)$	$\pm (0.6+0.01\times A)$
сти установки ослаб-	(12) ГГц:	(510) ГГц:	(1030) ГГц:
ления А без учета час-	$\pm (0,4+0,01\times A)$	$\pm (1+0.01 \times A)$	$\pm (1+0.01 \times A)$
тотной коррекции от-	(26) ГГц:	(1018) ГГц:	(3040) ГГц:
носительно 0 дБ, дБ	±(0,6+0,013×A)	$\pm (1+0.013 \times A)$	$\pm (2+0,013\times A)$
Максимальная мощ-	1 Вт		
ность входного сигнала			
Неповторяемость при	0,02 дБ		
переключении, не более			

Питание:				
$-$ напряжение сети, В 220 ± 22				
– частота сети, Гц	5060			
Потребляемая мощность, не более, В-А	40			
Масса, не более, кг:	5			
Габаритные размеры блока, мм:				
– длина	250			
– ширина	117			
– высота	395			

Рабочие условия применения:	
температура окружающего воздуха, °С	от 5 до 45
относительная влажность воздуха, %	до 80 при 25 °C
атмосферное давление, кПа (мм рт.ст.)	от 60 до 106,7
	(от 460 до 800)

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации типографским способом и переднюю панель прибора в месте под инвентарной наклейкой способом наклеивания.

Комплектность

№ п/п	Наименование	Количество
1.	Аттенюатор ступенчатый R&S RSC	1
	Опции: модули 03; 04; 05; 13; 14; 15; Z405	По заказу
2.	Руководство по эксплуатации (на русском языке) «Аттенюаторы ступенчатые R&S RSC»	1
3.	Методика поверки	1

Поверка

осуществляется в соответствии с документом «Аттенюаторы ступенчатые R&S RSC. Методика поверки МП РТ 1613-2011», утвержденным $\Phi\Gamma Y$ «Ростест-Москва» в ноябре 2011 г.

Основное поверочное оборудование

Наименование	Требуемые технические	Рекомендуемое средство	
средства поверки	ства поверки		поверки
	Пределы измерений	Пределы допускае- мой погрешности	
1	2	3	4
Вольтметр универ-	от 1 мВ до 10 В	±0,004 %	Вольтметр универсаль-
сальный	пост. ток		ный В7-78/1

1	2	3	4
Ваттметр погло-	от 300 нВт до 100 мВт,	Нелинейность не бо-	Ваттметр поглощаемой
щаемой мощности	от 0 до 50 ГГц	лее 0,01 дБ	мощности СВЧ NRP-Z56
Анализатор цепей	Коэффициент передачи	±0,1 дБ	Векторный анализатор
векторный	(040) дБ,		электрических цепей
	от 10 МГц до 40 ГГц		ZVA40

Сведения о методиках (методах) измерений

Методы измерений с помощью аттенюаторов ступенчатых R&S RSC приведены в эксплуатационном документе "Аттенюаторы ступенчатые R&S RSC. Руководство по эксплуатании".

Нормативные и технические документы, устанавливающие требования к аттенюаторам ступенчатым R&S RSC

Техническая документация фирмы "Rohde & Schwarz GmbH & Co. KG", Германия. ГОСТ Р 8.562-2007 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений мощности и напряжений переменного тока синусоидальных электромагнитных колебаний».

Рекомендации по области применения

Аттенюаторы ступенчатые R&S RSC применяются при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям, и в качестве рабочих эталонов при поверке средств измерений.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93