Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 **Екатеринбург** (343)384-55-89 **Липецк** (4742)52-20-81 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 **Иркутск** (395)279-98-46 Казань (843)206-01-48 **К**алининград (4012)72-03-81 **К**алуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Тюмень (3452)66-21-18 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Ульяновск (8422)24-23-59 Yda (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Казахстан (772)734-952-31

https://rohdeschwarz.nt-rt.ru || rwz@nt-rt.ru

Россия (495)268-04-70

Ваттметры проходящей мощности СВЧ NRP-Z28, NRP-Z98

Внесен в Государственный реестр
средств измерений
Регистрационный <u>№ 43643-10</u>
Взамен №

Выпускаются по технической документации фирмы «Rohde & Schwarz GmbH & Со.КС », Германия.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Ваттметры проходящей мощности СВЧ NRP-Z28, NRP-Z98 (далее - ваттметры) предназначены для измерений мощности СВЧ непрерывных и модулированных колебаний в коаксиальном тракте.

Ваттметры применяются для измерения мощности при исследовании, разработке, производств, отладке, контроле параметров и ремонте СВЧ аппаратуры, измерительных систем, а также в качестве устройства сравнения в системах автоматического регулирования мощности генераторов.

ОПИСАНИЕ

Измеряемая на выходе ваттметра мощность СВЧ, пропорциональна мощности, ответвленной в боковой канал, оснащенный диодными детекторами. В диодных детекторах мощность СВЧ преобразуется в напряжение постоянного тока, которое усиливается и аналого-цифровым преобразователем преобразуется в цифровой код. Измеряемая мощность СВЧ колебаний делится не равномерно между диодами, что позволяет разбить диапазон измерений мощностей на поддиапазоны, в каждом из которых диодный детектор используется в квадратичном режиме.

В качестве индикаторного блока при проведении измерений используется индикаторные (измерительные) блоки серии NRP или любой персональный компьютер, совместно с опцией NRP-Z4, работающий под управлением операционной системы «Windows-XP», с интерфейсом USB; могут использоваться средства измерений производства фирмы «Rohde & Schwarz GmbH & Co. KG» (при наличии в их составе специальных программных и аппаратных опций): анализаторы спектра серий FSL, FSP, FSU, FSUP, FSQ; векторные анализаторы цепей серий ZVA, ZVB, ZVL; генераторы сигналов серий SMA, SMB, SMF; SMC.

Рабочие условия применения:

Температура окружающего воздуха, °С	от 0 до плюс 50
Относительная влажность воздуха, %,	не более 80 (при 20 °C)

Атмосферное давление 84 ...106,7 кПа

Нормальные условия применения:

 Температура окружающего воздуха, ° С
 от плюс 15 до плюс 35

 Относительная влажность воздуха, %,
 не более 80 (при 20 °C)

 Атмосферное давление
 84 ...106,7 кПа

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диапазон частот:

от 12 ГГи до 18 ГГи

ваттметр NRP-Z98	от 9 кГц до 6 ГГц
ваттметр NRP-Z28	от 10 МГц до 18 ГГц
Диапазон измерений мощности, мВт	от $2 \cdot 10^{-7}$ до $1 \cdot 10^2$
Поддиапазоны измерений мощности, мВт	
поддиапазон 1	от $2 \cdot 10^{-7}$ до $4 \cdot 10^{-2}$ от $2 \cdot 10^{-5}$ до $4 \cdot 10^{0}$
поддиапазон 2	от 2·10 ⁻⁵ до 4·10 ⁰
поддиапазон 3	от 2·10 ⁻³ до 1·10 ²

Модуль эффективного коэффициента отражения выхода, не более

до 2,4 ГГц		0,05
от 2,4 ГГц до 4 ГГц		0,07
от 4 ГГц до 8 ГГц		0,10
от 8 ГГц до 18 ГГц		0,13
КСВН входа, не более		
до 2,4 ГГц		1,35
от 2,4 ГГц до 4 ГГц		1,45
от 4 ГГц до 8 ГГц		1,75
от 8 ГГц до 12 ГГц		1,80

Пределы допускаемой относительной погрешности измерения мощности $0.01~\mathrm{mBt}$, 1 мВт на фиксированных частотах, без учета погрешности рассогласования, в диапазоне температур от $20~\mathrm{C}$ до $25~\mathrm{°C}$, %:

до 100 МГц*	± 1,3
от 250 МГц до 4 ГГц с шагом 250 МГц	± 1,5
от 4 ГГц до 8/6 ГГц с шагом 250 МГц	± 2,0
от 8 ГГц до 12 ГГц с шагом 250 МГц	$\pm 2,5$
от 12 ГГц до 18 ГГц с шагом 250 МГц	± 3,0

Пределы допускаемой основной относительной погрешности измерения мощности от $1\cdot 10^4$ мВт до $1\cdot 10^2$ мВт, без учета погрешности рассогласования, %:

от 10 МГц/ 9 кГц до 4 ГГц	± 2,0
от 4 ГГц до 8 ГГц/ 6 ГГц	$\pm 2,5$
от 8 ГГц до 12 ГГц	\pm 3,0
от 12 ГГц до 18 ГГц	$\pm 3,5$

^{*} Примечание. Для NRP-Z98: 9, 14, 20, 30, 50, 100, 200, 500 кГц; 1, 2, 5 МГц. Для NRP-Z28 и NRP-Z98: 10, 15,020, 30, 50, 100 МГц.

1.90

Пределы допускаемой дополнительной относительной погрешности измерения мощности от $1\cdot10^{-4}$ мВт до $2\cdot10^{2}$ мВт, %: ± 2.5

Пределы допускаемой основной относительной погрешности измерения отношения значений мощности до 6 $\Gamma\Gamma$ ц/ от 6 до 18 $\Gamma\Gamma$ ц, %:

от – 40 дБм до - 19 дБм	$\pm 0,5/ \pm 0,5$
от – 19 дБм до 0 дБм	$\pm 0.5/ \pm 0.8$
от 0 дБм до + 20 дБм	$\pm 1,0/ \pm 2,0$
от – 40 дБм до + 20 дБм	$\pm 2.3/\pm 3.2$

Пределы допускаемой дополнительной относительной погрешности измерения отношения значений мощности до 6 ГГц/ от 6 до 18 ГГц, %:

от – 40 дБм до - 19 дБм	$\pm 0,1/\pm 0,1$
от – 19 дБм до 0 дБм	$\pm 0,1/\pm 0,2$
от 0 дБм до + 20 дБм	$\pm 0,1/\pm 0,2$
от – 40 дБм до + 20 дБм	$\pm 3,5/ \pm 3,5$

Пределы допускаемой абсолютной погрешности установки «нуля» в поддиапазонах измерений:

поддиапазон 1	± 114 пВт
поддиапазон 2	± 11 нВт
поддиапазон 3	± 1 мВт

Пределы допускаемого дрейфа «нуля» в течение одного часа после установки «нуля» при неизменной температуре в пределах $\pm~1\,^{\circ}$ С и предварительным прогревом в течение двух часов в поддипазонах измерений:

поддиапазон 1	± 39 πBτ
поддиапазон 2	± 3,3 нВт
поддиапазон 3	\pm 0,3 MBT
Максимальная мощность на входе ваттметра, Вт	
от 9 кГц до 2,4 ГГц	0,7
от 2,4 ГГц до 8 ГГц	0,9
от 8 ГГц до 12 ГГц	1,1
от 12 ГГц до 18 ГГц	1,3
Вносимые в тракт потери мощности, не более, дБ	
от 9 кГц до 2,4 ГГц	8,0
от 2,4 ГГц до 4 ГГц	8,5
от 4 ГГц до 8 ГГц	9,5
от 8 ГГц до 12 ГГц	10,5
от 12 ГГц до 18 ГГц	11,0
Волновое сопротивление входа, Ом	50
Соединитель входа/выхода	тип N «вилка» МЭК 16169-16
Длина строенного высокочастотного кабеля	
для подключения к источнику мощности, м	1
Масса преобразователей, не более, кг	0,6

Габаритные размеры преобразователей, мм:

длина

ширина

высота

48 50

250

знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации прибора.

комплектность

№ п/п	Наименование	Обозначение	Коли- чество
1.	Ваттметр NRP-Z28	NRP-Z28	1
2.	Ваттметр NRP-Z28	NRP-Z28	1
3.	Руководство по эксплуатации (на русском языке) «Датчик регулировки уровня R&S NRP-Z28, NRP-Z98»	1170.8966.12-02-	1
4	Программное обеспечение на CD диске «R&S NRP Power Meter. Power Sensors R&S NRP-Zxx and R&S FSH-Zxx»	1144.1380.12- 18.00	1
5	Методика поверки «Ваттметры проходящей мощности СВЧ NRP-Z28, NRP-Z98»	1170.8966.12-02- 2010 МП	1

Основное поверочное оборудование:

	терис	нические харак- стики	
Наименование средства поверки	средства поверки Пределы из- мерений Пределы из- пускаемой погрешности		Рекомендуемое сред- ство поверки
Генератор сигналов	(0,01-18) ГГц	Р > 100 мВт	SMF100A с опциями SMF-B2, SMF-B26, SMF-B32
Ваттметр поглощаемой мощности	от 0,5 до 12 ГГц 1,5≤КСВН≤1,8	$\Delta K = \pm 3 \% K$	Измеритель мощности термисторный с пре- образователем М5-89
Ваттметр поглощаемой мощности	12 ГГц≤f≤18 ГГц; 1,5≤КСВН≤1,8	$\Delta K = \pm 3 \% K$	Ваттметр М5-78
Переход коаксиально- коаксиальный N «ро- зетка» - N «розетка»	KCBH < 1,2		Huber+Suhner 33 N-50-0-7/133 NE
Измеритель отношения мощностей 1-ого разряда	0 - 60 дБ, 6 ГГц	δ < 0,01 дБ на10 дБ	FSV-309

Ваттметр поглощаемой мощности 1-ого разряда с выходным соединителем N «розетка»	Γ _H ≤0,07	δP = oτ 0,6 % до 1,6 %.	Эталон сравнения из состава ГЭТ 26-94
---	-----------------------	----------------------------	---------------------------------------

Межповерочный интервал: два года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ Р 8.562-2007 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений мощности и напряжений переменного тока синусоидальных электромагнитных колебаний».

ΓΟCT 8.569-2000 «Государственная система обеспечения единства измерений. Ваттметры СВЧ малой мощности диапазона частот 0,02-178,6 ГГц. Методика поверки и калибровки».

Техническая документация фирмы «Rohde & Schwarz GmbH & Co.KG », Германия.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 **К**алининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 **К**раснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 **Н**ижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Тюмень (3452)66-21-18 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Тула (4872)74-02-29 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04

Сургут (3462)77-98-35

Тверь (4822)63-31-35

Томск (3822)98-41-53

Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Казахстан (772)734-952-31